

Table of contents

<u>Unveiling the potential role of calix[4]pyrroles in catalysis</u>	1
<i>Ishfaq Ahmad Rather, Rashid Ali</i>	
1. Introduction	
2. Calix[4]pyrroles as organocatalysts	
3. Heterogeneous catalysts based on calix[4]pyrrole nanoparticles	
4. Catalysis through calix[4]pyrrole-based organometallic complexes	
5. Conclusions	
Acknowledgements	
References	
<u>Palladium-catalyzed heterocycle synthesis from allenes</u>	13
<i>Man-Bo Li, Jun Xuan</i>	
1. Introduction	
2. Palladium-catalyzed cyclization of allenes initiated from Pd ⁰	
3. Palladium-catalyzed cyclization of allenes initiated from Pd ^{II}	
4. Oxygen heterocycles synthesis from palladium-catalyzed allene chemistry	
5. Nitrogen heterocycles synthesis from palladium-catalyzed allene chemistry	
6. Oxazoline synthesis from palladium-catalyzed allene chemistry	
7. Heterogeneous palladium-catalyzed heterocyclic synthesis from allene	
8. Conclusion	
Acknowledgement	
References	
<u>Functionalization of P-heterocycles utilizing microwave irradiation</u>	34
<i>György Keglevich</i>	
1. Introduction	
2. Direct esterification of cyclic phosphinic acids	
3. Attempts for the direct amidation of cyclic phosphinic acids	
4. Alkylating esterification of cyclic phosphinic acids	
5. Propylphosphonic anhydride-promoted esterification of cyclic phosphinic acids	
6. Transesterification of cyclic phosphinates	
7. Aminolysis of cyclic phosphinates	
8. Hydrolysis of cyclic phosphinates	
9. Deoxygenation of 2,5-dihydro-1 <i>H</i> -phosphole 1-oxides	
10. Other P-functionalizations	
11. Conclusion	
Acknowledgement	
References	
<u>Electrochemical synthesis of heterocyclic compounds</u>	49
<i>Guilherme M. Martins, Guilherme B. Simoso, Pedro P. de Castro</i>	
1. Introduction	
2. C–O Bond formation	
3. C–N Bond formation	
4. C–C Bond formation	
5. Miscellaneous	
6. Emerging trends and future perspectives	
7. Conclusions	
Acknowledgement	
References	

Recent advances in the synthesis of 1,2-benzisoxazoles and 1,2-benzisoxazolines

67

Alexander A. Lukyanov, Alexey Yu. Sukhorukov, Andrey A. Tabolin

1. Introduction
2. Synthesis of 1,2-benzisoxazole core
 - 2.1. C–O Bond formation. Synthesis from *o*-substituted aryloximes
 - 2.2. N–O Bond formation. Synthesis from *o*-hydroxyaryl oximes and imines
 - 2.3. Synthesis from cyclic 1,3-dicarbonyl compounds with further oxidation
 - 2.4. Benzene ring formation. Synthesis from substituted isoxazoles
 - 2.5. Synthesis *via* [3+2]-cycloaddition reactions. Formation of C–C and C–O bonds
 - 2.5.1. An aryne-based route
 - 2.5.2. Nitrile oxide-benzoquinones cycloaddition
 - 2.6. C=N Double bond formation
 - 2.7. Miscellaneous methods
 - 2.8. Synthesis of benzisoxazole *N*-oxides and their rearrangements
3. Benzisoxazolium salts
4. Synthesis of 2,3-dihydro-1,2-benzisoxazoles (benzisoxazolines)
 - 4.1. Synthesis from Schiff bases
 - 4.2. Synthesis from 1,2-benzisoxazoles
 - 4.3. Benzene ring formation
 - 4.4. Aryne-based methodology
 - 4.5. Rh-catalyzed cyclization
5. 1,2-Benzisoxazoline-3-ones
6. Conclusions

References

Synthesis of N-, O-heterocycles from alkenes and diorganyl diselenides

99

Tales A. C. Goulart, Roberto do Carmo Pinheiro, Gilson Zeni

1. Introduction
2. Synthesis of organoselenyl lactones *via* cyclization of alkenes under metal free conditions
3. Synthesis of organoselenyl lactones *via* cyclization of alkenes using ferric chloride
4. Synthesis of organoselenyl lactones promoted by electrochemical processes
5. Synthesis of organoselenyl lactams *via* radical-promoted cyclization of alkenes
6. Synthesis of organoselenyl dihydropyrans *via* electrochemical cyclization of alkenes
7. Synthesis of selenyl N-, O-heterocycles promoted by hydrazones, benzimidates, and oximes
8. Synthesis of organoselenyl chromenones *via* cyclization reaction of enaminones
9. Synthesis of organoselenyl benzofuran derivatives *via* electrochemical reactions
10. Organoselenyl halides promoting cyclization reactions
11. Organoseleno cyclization of 2-alkenylbenzamides
12. Synthesis of organoselenyl thiazine *via* electro-oxidative reaction
13. Synthesis of organoselenyl oxindoles and quinolinones promoted by electrochemical processes
14. Synthesis of organoselenyl oxindoles *via* radical species of diorganyl diselenides
15. Synthesis of organoselenyl indolo-isoquinolinones and organoselenyl benzoazepines *via* electrophilic organoselenium species
16. Conclusion

Acknowledgements

References

Heterocycles in the design of carbonic anhydrase inhibitors. Part 1

116

Niccolò Paoletti, Claudiu T. Supuran

1. Introduction
2. Thiadiazoles
 - 2.1. Fungi and bacteria
3. Thiophene sulfonamides
 - 3.1. Bicyclo thieno-thiopyran

- 3.2. Bacterial CAs
- 4. Indole-based sulfonamides
- 5. Benzothiazoles
- 6. Benzimidazoles
- 7. Benzoxazoles
- 8. Quinoline sulfonamides
- 9. Aliphatic sulfonamides
 - 9.1. Thiadiazoles
 - 9.2. Zonisamide and derivatives
 - 9.3. Coumarins
 - 9.4. Triazoles
- 10. Pyridines
- 11. Conclusion

References

Synthetic approaches to heterocyclic α,α -disubstituted amino acids

139

Pablo Esteban-Arderius, Carlos Cuadros-Higuera, Diego Núñez-Villanueva

- 1. Introduction
- 2. Three-membered ring quaternary heterocyclic amino acids
- 3. Four-membered ring quaternary heterocyclic amino acids
- 4. Five-membered ring quaternary heterocyclic amino acids
- 5. Six-membered ring quaternary heterocyclic amino acids
- 6. Seven-membered ring and larger quaternary heterocyclic amino acids
- 7. Conclusions and future perspectives

Acknowledgement

References

Recent progress on synthesis of indoles through aminopalladation enabled cascade reaction

159

Zhi-Shi Ye, Gang Wang, Shi-Wei Li, Shao-Jie Cheng

- 1. Introduction
- 2. Aminopalladation/arylation cascades
- 3. Aminopalladation/alkenylation cascades
- 4. Aminopalladation/allylation cascades
- 5. Aminopalladation/alkylation cascades
- 6. Aminopalladation/C=X (X=C, O) and C≡N bonds insertion cascades
- 7. Miscellaneous reactions
- 8. Conclusion

Acknowledgement

References

Fluorescent coumarin derivatives: understanding molecular architecture, photophysical, and cell-imaging responses

181

Brenno A. D. Neto, Alexandre A. M. Lapis, Alberto A. R. Mota

- 1. Introduction
- 2. Basic designing principles to obtain fluorescent coumarin derivatives
- 3. Coumarin derivatives with simple molecular architecture and fluorescence response
- 4. The strategy of hybrid coumarin derivatives
- 5. Highlighted cell-imaging applications
- 6. Concluding remarks

Acknowledgement

References

Recent advances in copper-catalyzed synthesis of quinazolinones	200
<i>Samir Kumar Mondal, Ujala Rani, Girish Chandra, Shantanu Pal</i>	
1. Introduction	
2. General mechanism of copper catalyst mediated reactions	
3. Synthesis of quinazolinones	
3.1. Cross-coupling reactions	
3.2. Cu-Catalyzed aerobic oxidation	
3.3. Heterogeneous catalyst	
3.4. Modulation of quinazolinones	
3.5. Miscellaneous methods	
4. Conclusion	
5. Acknowledgement	
References	
Isocoumarins in skeletal editing: a synthetic approach to multi-substituted polycyclic aromatics	225
<i>Hikaru Yanai, Teru Kawazoe, Takashi Matsumoto</i>	
1. Introduction	
2. Synthesis of multi-substituted polycycles through isocoumarin skeletal editing	
2.1. Reactions with enolates and related C-centred nucleophiles	
2.2. Reactions with α -carbanion of methylphosphonates	
2.3. Reactions with organometallic reagents	
3 Isocoumarin-based lactol silyl ethers as potent platforms for ‘carbon swap’	
3.1. Ring rearrangement reactions of isocoumarin-based lactol silyl ethers	
3.2. Synthesis of π -extended heterocycles through ring rearrangement strategy	
4. Conclusion	
Acknowledgement	
References	
C-H Functionalization of indoles and oxindoles through CDC reactions	245
<i>Xi Chen, Shao-Dong Liu, Liang Cheng, Li Liu, Chao-Jun Li</i>	
1. Introduction Csp^2 - Csp^3	
2. Coupling of indole Csp^2 -H with Csp -H	
3. Coupling of indole Csp^2 -H with Csp^2 -H	
4. Coupling of indole Csp^2 -H with Csp^3 -H	
5. Coupling of indole Csp^2 -H with X-H	
6. Coupling of oxindole Csp^3 -H with C-H and X-H	
Conclusions	
Acknowledgement	
References	
The synthesis and reactions of isoindole N-oxides	265
<i>Rafał Loska</i>	
1. Introduction	
2. Synthesis of isoindole N-oxides	
2.1. Condensation	
2.2. Oxidation	
2.3. Rhodium and palladium-catalyzed reactions	
3. Reactions of isoindole N-oxides	
3.1. Nucleophilic addition	
3.2. Reduction	
3.3. Transition metal-catalyzed reactions with nitrone acting as a directing group	
3.4. Cycloaddition	

3.5. Radical traps

4. Conclusions

References

Synthesis and biological applications of selected N-containing heterocycles: recent advances of derivatives of aziridines, triazoles, and piperazines

280

Serena Vittorio, Christian Dank, Laura Ielo

Introduction

2. Aziridines

2.1. Syntheses of aziridines from alkenes

2.2. Syntheses of aziridines from imines

2.3. Miscellaneous

2.4. Biological activities of aziridines

2.4.1. Aziridines activities against oncological targets

2.4.2. Different biological targets of aziridines

3. Triazoles

3.1. Synthesis of 1,2,3-triazoles

3.1.1. Synthesis of 1,2,3-triazoles from azides

3.1.2. Synthesis of 1,2,3-triazoles: Azide-free approaches

3.2. Synthesis of 1,2,4-triazoles

3.2.2. Synthesis of 1,2,4-triazoles from hydrazones

3.2.3. Miscellaneous

3.3. Biological applications of triazoles

4. Piperazines

4.1. Syntheses of piperazines *via* ketopiperazine reduction and *N*-alkylation

4.2. Syntheses of piperazines *via* catalysis

4.3. Miscellaneous

4.4. Biological activities of piperazine derivatives

5. Conclusion

Acknowledgements

References

Iodine/DMSO catalytic system: a unified tool for the one-pot construction of heterocycles

308

Mariyara Arockiaraj, Venkatachalam Rajeshkumar

1. Introduction

2. Construction of five-membered heterocycles

2.1. Pyrroles

2.2. Furans

2.3. Imidazoles

2.4. Oxazoles and oxadiazoles

2.5. Thiazoles

2.6. Triazoles

2.7. Indoles and isatins

2.8. Benzofurans

2.9. Benzimidazoles

2.10. Benzothiazoles

3. Construction of six-membered heterocycles

3.1. Pyridines

3.2. Pyrazines

3.3. Triazines

3.4. Quinolines

9. Construction of fused heterocycles

10. Conclusion

Acknowledgment

References

Microwave-assisted synthesis of nitrogen heterocycles

322

Karthiyayini Gnanaoli, Deepan Babu Rajkumar, C. Uma Maheswari, Vellaisamy Sridharan

1. Introduction
2. Synthesis of five-membered nitrogen heterocycles
 - 2.1. Pyrroles and fused pyrroles
 - 2.2. Pyrrolidine-related compounds
 - 2.3. Pyrazoles
 - 2.4. Thiazoles and benzothiazoles
 - 2.5. Miscellaneous five-membered nitrogen heterocycles
3. Synthesis of six-membered nitrogen heterocycles
 - 3.1. Pyridines
 - 3.2. Quinolines
 - 3.3. Imidazo[1,2-*a*]pyridines
 - 3.4. Miscellaneous six-membered nitrogen heterocycles
4. Synthesis of seven-membered nitrogen heterocycles
5. Synthesis of three- and four-membered nitrogen heterocycles
 - 5.1. Aziridines
 - 5.2. Azetidines
6. Conclusions

References

Synthesis of benzo[*b*]thiophenes using alkynes as precursors under metal-free conditions

344

Ricardo F. Schumacher, Alex Ketzer, Roberta Cargnelutti, Filipe Penteado

1. Introduction
2. Benzo[*b*]thiophenes obtained through electrophilic cyclization reactions
 - 2.1. Halogen-based electrophiles
 - 2.2. Chalcogen-based electrophiles
 - 2.3. Boron and silicon-based electrophiles
3. Benzo[*b*]thiophenes obtained through radical cyclization reactions
4. Benzo[*b*]thiophenes obtained through photochemical reactions
5. Benzo[*b*]thiophenes obtained through electrochemical reactions
6. Benzo[*b*]thiophenes obtained through aryne intermediate
7. Conclusion

Acknowledgements

References

Oxidative Csp^2 –H/ Csp^2 –H (hetero)arylation of aromatic heterocycles. An overview

368

Ahmed El Akkaoui, Nabil El Brahmi, Jamal Koubachi, Saïd El Kazzouli

1. Introduction
2. Cross-dehydrogenative coupling (CDC) reactions between (hetero)arene and arene
3. Oxidative Csp^2 –H/ Csp^2 –H cross-coupling reactions between two heteroarenes
4. Conclusion

Acknowledgement

References

Photocatalytic Minisci reaction

399

Jianyang Dong, Qingmin Wang

1. Introduction
2. Advances in radical generation *via* decarboxylation
 - 2.1. Direct decarboxylation of carboxylic acids

- 2.2. Decarboxylation of activated carboxylic acids
- 3. Advances in radical generation *via* hydrogen atom abstraction
 - 3.1. Minisci reactions *via* intermolecular hydrogen atom abstraction
 - 3.2. Minisci reactions *via* intramolecular 1,5-hydrogen migration
- 4. Advances in radical generation from boron compounds
- 5. Advances in radical generation from sulfur compounds
- 6. Advances in radical generation from alkyl halides
- 7. Minisci reactions *via* spin center shift (SCS)
- 8. Advances in radical generation from C–C fragmentation
- 9. Advances in radical generation from diazonium salts
- 10. Advances in radical generation from dihydropyridines
- 11. Radicals from alkylpyridinium salts
- 12. Conclusion

Acknowledgement

References

Metal-free (halo-)heterocyclization of unsaturated amides: synthesis of (halogenated) 2-oxazolines 423 and dihydro 1,3-oxazines

Weiwei Zhu, Guangfeng Zou, Xingyu Ma

- 1. Introduction
- 2. Lewis acid-promoted heterocyclization of UAs
 - 2.1. Synthesis of 2-oxazolines
 - 2.2. Synthesis of dihydro-1,3-oxazines and benzoxazepines
 - 2.3. Synthesis of fluorinated spiro-2-oxazolines
- 3. Hypervalent iodine-catalyzed nucleophilic halogenation of UAs
 - 3.1. Asymmetric synthesis of fluorinated dihydro-1,3-oxazines and benzoxazepines
 - 3.2. Synthesis of halogenated 2-oxazolines
 - 3.3. Synthesis of halogenated dihydro-1,3-oxazines
- 4. Electrophilic halo-heterocyclization of UAs
 - 4.1. Synthesis of halogenated (spiro)-2-oxazolines
 - 4.2. Synthesis of halogenated dihydro-(chromeno)-1,3-oxazines
- 5. Conclusion and outlook

Acknowledgement

References