

Table of contents

Methodologies for the synthesis of β -carbolines 1

Siobhan Boswood, Stefan Roesner

1. Introduction
2. Oxidation of tetrahydro- and dihydro- β -carbolines
3. Methodologies that generate the pyridine ring
 - 3.1. Pictet-Spengler reaction
 - 3.2. Bischler-Napieralski reaction
 - 3.3. Condensation reactions
 - 3.4. Iminoannulation reactions
 - 3.5 Palladium-catalyzed reactions
 - 3.6. Other transition metal-catalyzed reactions
 - 3.7. Miscellaneous reactions
4. Methodologies that generate the central pyrrole ring
 - 4.1. Palladium-catalyzed procedures
 - 4.2. Miscellaneous procedures that generate the pyrrole ring
5. Cascade reactions that generate the pyrrole as well as the pyridine ring
 - 5.1. Transition metal-catalyzed cycloadditions
 - 5.2. Other cascade sequences
6. Conclusions

Acknowledgements

References

Heterocyclic α -oxoesters (hetaryl glyoxylates): synthesis and chemical transformations. Part 2. 23

Bohdan V. Vashchenko, Oleksandr Geraschenko, Oleksandr O. Grygorenko

1. Introduction
2. Synthesis of 1,2-azolyl glyoxylates and their fused analogs
3. Chemical transformations of 1,2-azolyl glyoxylates and their fused analogs
4. Synthesis of 1,3-azolyl glyoxylates and their fused analogs
5. Chemical transformations of 1,3-azolyl glyoxylates and their fused analogs
 - 5.1. Functional group interconversions
 - 5.2. Heterocyclizations
6. Synthesis and chemical transformations of triazolyl glyoxylates
7. Synthesis of azine-derived glyoxylates
8. Chemical transformations of azine-derived glyoxylates
9. Conclusions

Acknowledgement

References

Azanaphthoquinones: privileged scaffolds in nature. Biological activities, synthesis, and regioselective reactions 51

Paulo C. M. L. Miranda, Nelson H. Morgan, Joaquim A. M. Castro, Alan R. S. Davide, Lucas C. Santana, Caio M. Porto

1. Introduction
2. Azanaphthoquinones bearing substituents at positions 1 or 2
3. Azanaphthoquinones bearing substituents at positions 3 or 4
4. Azanaphthoquinones bearing substituents at positions 6 or 7
5. Theoretical aspects for regioselectivity of the nucleophilic attack at azanaphthoquinones
6. Conclusion

Acknowledgments

References

Cyclization of alkynes under metal-free conditions: synthesis of indoles

65

Roberto do Carmo Pinheiro, Gilson Zeni

1. Introduction
2. Synthesis of indoles *via* electrochemical-mediated cyclization of alkynes
3. Synthesis of indoles *via* oxidative nucleophilic cyclization of alkynes
4. Synthesis of indoles *via* cyclization of alkynes promoted by microwave irradiation
5. Synthesis of indoles *via* radical-promoted cyclization of alkynes
6. Synthesis of indoles *via* base-promoted cyclization of alkynes
7. Synthesis of indoles *via* nucleophilic cyclization of alkynes promoted by electrophiles
8. Miscellaneous strategies
9. Conclusion

Acknowledgements

References

Synthesis and heterocyclizations of *ortho*-amino(alkynyl)naphthalenes

82

Anna V. Gulevskaya, Ekaterina A. Filatova

1. Introduction
2. Synthesis of *ortho*-amino(alkynyl)naphthalenes
 - 2.1. Synthesis 2-alkynylnaphthalen-1-amines
 - 2.2. Synthesis of 1-alkynylnaphthalen-2-amines
 - 2.3. Synthesis of 3-alkynylnaphthalen-2-amines
3. Heterocyclizations of *ortho*-amino(alkynyl)naphthalenes
 - 3.1. Heterocyclizations of 2-alkynylnaphthalen-1-amines
 - 3.2. Heterocyclizations of 1-alkynylnaphthalen-2-amines
 - 3.3. Heterocyclizations of 3-alkynylnaphthalen-2-amines
4. Conclusions

References

Construction of substituted 2-pyrazolines

116

Yi-Kang Zhang, Peng An

1. Introduction
2. Reactions between hydrazines and α,β -unsaturated enones
3. Intramolecular amination of β,γ -unsaturated hydrazones
4. 1,3-Dipolar cycloaddition between nitrile imine and alkenes
5. Through Huisgen zwitterions
6. Other methods
7. Conclusion

Acknowledgment

References

Visible-light-induced synthesis of phosphorylated compounds

134

Fan Gao, Bing Yu

1. Introduction
2. Visible-light-induced synthesis in homogeneous systems
 - 2.1. Phosphorylation reactions catalyzed by transition metal complex photocatalysts
 - 2.2. Phosphorylation reactions catalyzed by metal-free organic photocatalysts
 - 2.3. Phosphorylation reactions in photocatalyst-free conditions
3. Visible-light-induced synthesis in heterogeneous systems
4. Conclusions

Acknowledgment

References

Recent progress on atropenantioselective synthesis of axially chiral pyrroles

151

Yu-Jing Xi, Xiao-Ming Zhao, Sheng-Cai Zheng

1. Introduction
2. Axially chiral pyrroles bearing stereogenic axis at N1-position
 - 2.1. *De novo* ring formation" strategy
 - 2.2. "Desymmetrization" strategy
 - 2.3. "(Dynamic) kinetic resolution" strategy
3. Axially chiral pyrroles bearing stereogenic axis at C2-position
 - 3.1. *De novo* ring formation" strategy
 - 3.2. "Central-to-axial chirality " strategy
4. Axially chiral pyrroles bearing stereogenic axis at C3-position
 - 4.1. *De novo* ring formation" strategy
 - 4.2. "Kinetic resolution" strategy
 - 4.3. "Central-to-axial chirality" strategy
5. Conclusion

Acknowledgement

References

Recent advances in catalytic asymmetric synthesis of chiral pyridine derivatives

164

Huiliang Zhu, Xiaowei Dou

1. Introduction
2. Catalytic asymmetric addition to unsaturated double bonds
3. Catalytic asymmetric reduction
4. Catalytic asymmetric cross-coupling
5. Catalytic asymmetric C–H functionalization
6. Miscellaneous reactions
7. Conclusion

Acknowledgement

References

Synthesis of dimeric aryls and heteroaryls through dimerization

180

Hai-Lei Cui

1. Introduction
2. Formation of aryl-aryl bond
3. Formation of heteroaryl-heteroaryl bond
4. Conclusion

Acknowledgement

References

Recent advances in electrochemical synthesis of diversified functionalized spiro[n.5]enone derivatives

202

Ju Wu, Yufen Zhao

1. Introduction
2. Electrochemical synthesis of functionalized spiro[4.5]dienone derivatives
3. Electrochemical synthesis of functionalized spiro[4.5]trienone derivatives
4. Electrochemical synthesis of functionalized spiro[5.5]trienone derivatives
5. Conclusion

Acknowledgment

References

Cycloannulation strategies for the direct construction of 3-functionalized benzoheteroaromatics

223

Raju Jannapu Reddy, Arram Haritha Kumari, Nunavath Sharadha

1. Introduction
2. Synthesis of 3-acylated benzoheteroaromatics
 - 2.1. Cycloannulation of 1,6-enynes
 - 2.2. Cycloannulation through acyl group migration
 - 2.3. Cycloannulation through C–H functionalization
 - 2.4. Oxidative cycloannulations
3. Construction of 3-sulfonyl benzoheteroaromatics
 - 3.1. Sulfonylative-cycloannulation using sodium sulfinate
 - 3.2. Sulfonylative-cycloannulation using other sulfonyl sources
 - 3.3. Sulfonylative-cycloannulation through three component coupling reactions
 - 3.4. Miscellaneous cycloannulations
4. Synthesis of 3-vinyl benzoheteroaromatics
 - 4.1. Cycloannulation through alkenyl group migration
 - 4.2. Alkenylative-cycloannulations
 - 4.3. Miscellaneous
5. Conclusions

Acknowledgement
References

Synthetic approaches to 4-aryl-3,4-dihydrocoumarins

254

Sandhya Singh Yadav, Jyoti Sharma, Sagar B. Khandekar, Rodney A. Fernandes

1. Introduction
2. Metal-free approaches
 - 2.1. Zeolites
 - 2.2. Protic acids
 - 2.3. Solid acids
 - 2.4. Lewis acids
 - 2.5. Other metal-free catalysts
3. Transition metal-mediated or -catalysed approaches
 - 3.1. Iron-mediated or -catalyzed methods
 - 3.2. Copper-catalyzed method
 - 3.3. Rhodium-catalyzed methods
 - 3.4. Palladium-catalyzed methods
4. Organocatalysis approaches
5. Conclusions and outlook

Acknowledgement
References

Realistic catalysts for the cycloaddition of CO₂ to epoxides under ambient conditions to generate cyclic organic carbonates: the case of coordination compounds and naturally available hydrogen bond donors

282

Tanika Kessarati, Suthida Kaewsai, Valerio D'Elia

1. Introduction
2. Cycloaddition of CO₂ to epoxides catalyzed by coordination compounds
 - 2.1. Homogeneous coordination compounds
 - 2.2. Surface-supported coordination compounds
3. Cycloaddition of CO₂ to epoxides catalyzed by biobased H-bond donors
 - 3.2. Recyclable biobased H-bond donors
4. Conclusions and outlook

Acknowledgements
References

Metal-catalyzed borylative cyclization reactions of polynsaturated substrates for the synthesis of heterocycles 309

Inés Manjón-Mata, M. Teresa Quirós

1. Introduction
2. Borylative cyclization reactions of dienes
 - 2.1 Rhodium-catalyzed borylative cyclizations
 - 2.2 Copper-catalyzed borylative cyclizations
 - 2.3 Palladium-catalyzed borylative cyclizations
3. Borylative cyclization reactions of enynes
 - 3.1 Rhodium-catalyzed borylative cyclizations
 - 3.2 Palladium-catalyzed borylative cyclizations
 - 3.3 Ruthenium-catalyzed borylative cyclizations
 - 3.4 Gold-catalyzed borylative cyclizations
 - 3.5 Iron-catalyzed borylative cyclizations
 - 3.6 Cobalt-catalyzed borylative cyclizations
 - 3.7 Nickel-catalyzed borylative cyclizations
 - 3.8 Copper-catalyzed borylative cyclizations
4. Borylative cyclization reactions of diynes
 - 4.1 Cobalt-catalyzed borylative cyclizations
 - 4.2 Copper-catalyzed borylative cyclizations
5. Borylative cyclization reactions of allenynes and enallenenes
 - 5.1 Palladium-catalyzed borylative cyclizations
 - 5.2 Nickel-catalyzed borylative cyclizations
6. Borylative cyclization reactions of bisallenenes
 - 6.1 Palladium-catalyzed borylative cyclizations
7. Diborylative cyclization reactions
 - 7.1. Palladium-catalyzed diborylative cyclization of dienes
 - 7.2. Nickel-catalyzed diborylative cyclization of enynes
8. Conclusions

Acknowledgements

References

Synthesis of benzo[*b*]furan derivatives by transition metal-catalyzed heterocyclizations of 2-ethynylphenols 341

Rubén Miguélez, Omar Arto, José Manuel González, Pablo Barrio

1. Introduction
2. Heterocyclization employing gold-catalysis
3. Heterocyclization employing other transition metal-catalysis
4. Conclusions

Acknowledgements

References

Synthesis and application of diaza[5]helicenes

360

Marina Degač, Martin Kotora

1. Introduction
2. Symmetric *m,n*-diaza[5]helicene
 - 2.1. List of symmetric *m,n*-diaza[5]helicenes
 - 2.2. 1,14-Diaza[5]helicenes (benzo[1,2-*h*:4,3-*h*']diquinolines)
 - 2.2.1. Synthesis
 - 2.2.2. Properties and application
 - 2.3. 2,13-Diaza[5]helicenes (benzo[1,2-*h*:4,3-*h*']diisoquinolines)
 - 2.3.1. Synthesis

- 2.3.2. Properties and application
- 2.4. 3,12-Diaza[5]helicenes (benzo[2,1-*f*:3,4-*f*']diisoquinolines)
 - 2.4.1. Synthesis
- 2.5. 4,11-Diaza[5]helicenes (benzo[2,1-*f*:3,4-*f*']diquinolines)
 - 2.5.1. Synthesis
 - 2.5.2. Properties and application
- 2.6. 5,10-Diaza[5]helicenes (dibenzo[*a,k*][3,8]phenanthrolines)
 - 2.6.1. Synthesis
 - 2.6.2. Properties and application
- 2.7. 6,9-Diaza[5]helicenes (dibenzo[*a,k*][4,7]phenanthrolines)
 - 2.7.1. Synthesis
 - 2.7.2. Properties and application
- 2.8. 7,8-Diaza[5]helicenes (benzo[*f*]naphtho[2,1-*c*]cinnolines)
 - 2.8.1. Synthesis
 - 2.8.2. Properties and application
- 3. Unsymmetric *m,n*-diaza[5]helicenes
 - 3.1. List of unsymmetric *m,n*-diaza[5]helicenes
 - 3.2. Synthesized unsymmetric *m,n*-diaza[5]helicenes
 - 3.2.1. Synthesis
 - 3.2.2. Properties and application
 - 3.3. Other unsymmetric *m,n*-diaza[5]helicenes
- 4. Selected physical properties of *m,n*-diaza[5]helicenes
 - 4.1. X-ray data
- 5. Conclusion and perspectives
- References

Recent developments in C–H functionalization of carbazoles

378

Srinivasarao Arulananda Babu, Ramandeep Kaur, Harcharan Singh, Amit Kumar

- 1. Introduction
- 2. Synthesis of alkylated carbazoles *via* C–H alkylation
 - 2.1. C1 Alkylation
 - 2.2. C2 Alkylation
 - 2.3. C3 Alkylation
 - 2.4. C4 Alkylation
- 3. Synthesis of C–H arylated carbazoles *via* C–H arylation
- 4. Synthesis of C–H alkenylated, alkynylated, and allylated carbazoles
 - 4.1. C1 Alkenylation/alkynylation/allylation
- 5. C–H Acylation, acetoxylation, cyanation, borylation, halogenation, perfluoroalkylation, chalcogenation, amidation/amination, *N*-carbazolation of carbazole
 - 5.1. C1 Acylation, acetoxylation, cyanation, and amidation reactions
 - 5.2. C–H Chalcogenation of carbazole
 - 5.3. C–H Borylation, halogenation, perfluoroalkylation, and *N*-carbazolation of carbazole
- 6. Oxidative cross-coupling with carbazole
- 7. Intramolecular C–H cyclization involving carbazole
- 8. Annulation reaction involving C–H bond of carbazole towards modified carbazole
- 9. C–H Functionalization of tetrahydrocarbazole
- 10. C–H Deuteration in carbazole
- 11. Miscellaneous reactions involving C–H functionalization of carbazoles
- 12. Conclusion
- References

The tambjamines: pyrrolylpvrromethene-containing alkaloids with diverse biological profiles 425*Liangguang Yi, Martin G. Banwell, Ping Lan, Claudia Pessoa*

1. Introduction
2. Isolation, structural elucidation, ecological roles and distribution of the producing organisms
3. Biogenesis
4. Biological and related activities
5. Total syntheses of the tambjamines
6. Synthesis of analogues and their biological profiles
7. Prospects for the development of the tambjamines as therapeutic agents
8. Conclusions

Acknowledgements
References and notes

Syntheses of fluorine-containing heterocyclic compounds via direct and indirect methods using difluorocarbenes 443*Kohei Fuchibe, Junji Ichikawa*

1. Introduction
2. Syntheses using difluorocarbenes: direct methods
 - 2.1. Synthesis of difluoromethoxy- and difluoromethylsulfanyl-substituted pyridine, oxazole, and pyran derivatives *via* difluoromethylation
 - 2.2. Synthesis of (di)fluorothiazoline, (di)fluorooxazoline, and (di)fluoropyrroline derivatives *via* [4 + 1]-annulation
 - 2.3. Synthesis of fluorothienothiophenes and fluorothienofurans *via* abnormal [4 + 1]-annulation
3. Syntheses starting from fluorinated cyclopropanes: indirect methods
 - 3.1. Synthesis of (di)fluorothiophene derivatives *via* single activation of the trifluoromethyl group
 - 3.2. Synthesis of (difluoroethyl)benzoxazines *via* regioselective three-membered ring opening
4. Conclusions

Acknowledgements
References