

Table of contents

<u>Disubstituted 1,2,3-triazoles as amide bond mimetics</u>	1
<i>Miriam Corredor, Jordi Solà and Ignacio Alfonso</i>	
1. Introduction	
2. Synthesis of disubstituted 1,2,3-triazole rings	
2.1. Synthesis of 1,4-disubstituted-1,2,3-triazoles	
2.2. Synthesis of 1,5-disubstituted-1,2,3-triazoles	
2.3. Synthesis of 2,4-disubstituted-1,2,3-triazoles	
3. Structural properties	
3.1. Physico-chemical properties of the differently substituted 1,2,3-triazoles	
3.2. Structural characterization	
4. Disubstituted triazole rings in peptides	
4.1. Triazole as a peptide bond mimic	
4.2. Cyclic peptides	
4.3. Oligomeric triazolamers	
5. Disubstituted triazole rings in peptoids	
6. Conclusions	
Acknowledgements	
References	
 <u>The synthesis of azahelicenes</u>	
23	
<i>Ivo Starý and Irena G. Stará</i>	
1. Introduction	
2. Synthesis of pyridohelicenes	
2.1. Photochemical methodology	
2.2. Non-photochemical methodologies	
3. Synthesis of other azahelicenes	
3.1. Cationic azahelicenes	
3.2. Non-cationic azahelicenes	
4. Nonracemic pyridohelicenes and other azahelicenes	
4.1. Resolution of racemates	
4.2. Asymmetric synthesis	
5. Functionalisation of existing pyridohelicenes and other azahelicenes	
6. Conclusions	
Acknowledgments	
References	
 <u>Advances and challenges in the synthesis of pyrrole systems of a limited access</u>	
54	
<i>Dmitrii A. Shabalin, Elena Yu. Schmidt and Boris A. Trofimov</i>	
1. Introduction	
2. Synthesis of 3 <i>H</i> -pyrroles	
2.1. Modification of 1 <i>H</i> -pyrroles	
2.2. From carbonyl compounds	
2.3. From oximes	
2.4. From nitriles	
2.5. From isonitriles	
2.6. Miscellaneous methods	
3. Synthesis of pyrrole analogues of stilbenes	
3.1. Nucleophilic addition to het(aryl)acetylenes	
3.2. Syntheses from oxiranes	
3.3. Syntheses involving transition metal complexes	

3.4. Miscellaneous methods
 4. Synthesis of di- and oligopyrroles separated by conjugated heterocyclic systems
 List of abbreviations
 References

Construction of 1,4,6,10-tetraazaadamantanes via intramolecular oxime/hydrazine cyclotrimerization approach 82

Artem N. Semakin and Alexey Yu. Sukhorukov

1. Introduction
2. Synthetic strategy towards 1,4,6,10-tetraazaadamantane cage
3. Synthesis of tris-oximes and tris-hydrazone as precursors of 1,4,6,10-tetraazaadamantanes
4. Studies of the intramolecular cyclotrimerization of C=N groups in tris-oximes and tris-hydrazone
5. Stabilization of 1,4,6,10-tetraazaadamantane cage
6. Synthesis of unsubstituted 1,4,6,10-tetraazaadamantane (“isourotropine”) and its derivatives
7. Comparison of urotropine and “isourotropine” structures
8. Application of 1,4,6,10-tetraazaadamantanes for the design of water-soluble functional molecules
9. Conclusions

Acknowledgements
 References

Quinoxaline synthesis by domino reactions 98

Jie-Ping Wan and Li Wei

1. Introduction
2. Synthesis using *o*-phenylenediamine as the main building blocks
 - 2.1. Reaction with vicinal dicarbonyl compounds
 - 2.2. Reactions with α -haloketones
 - 2.3. Reactions with α -hydroxylated ketones and vicinal diols
 - 2.4. Reactions with alkynes and alkenes
 - 2.5. Reactions with methylene aldehydes and ketones
 - 2.6. Reactions with other substrates
3. Synthesis using *o*-nitroanilines as *o*-phenylenediamine precursors
4. Reactions without *o*-phenylenediamine
 - 4.1. Reactions involving aryl C-H functionalization
 - 4.2. Reactions using *ortho*-diisocyanoarenes
 - 4.3. Other reactions
5. Conclusion

Acknowledgements
 References

Thiourea-amine catalysed asymmetric synthesis of functionalised epoxides 124

Sara Meninno and Alessandra Lattanzi

1. Introduction on bi- and multifunctional thiourea-amines
2. Asymmetric organocatalytic nucleophilic epoxidation overview
3. Thiourea-amine catalysed epoxidation of electron-poor alkenes
4. Thiourea-amine catalysed kinetic resolution of racemic epoxides
5. Conclusions

Acknowledgements
 References

Cyclic benzoxathiazine 2,2-dioxides: versatile electrophiles for asymmetric catalysis 137

Lode De Muck, Carlos Vila and José R. Pedro

1. Introduction

2. Preparation of benzoxathiazine 2,2-dioxides
3. The use of benzoxathiazine 2,2-dioxides as electrophiles for asymmetric catalysis
 - 3.1. Addition reactions of organometallic reagents
 - 3.1.1. Addition reactions of organoboron reagents
 - 3.1.2. Addition reactions of organozinc reagents
 - 3.2. Cycloadditions reactions
 - 3.3. Mannich reactions
 - 3.4. Friedel-Crafts reactions
 - 3.5. Hydrogenation reactions
4. Conclusions
- Acknowledgement
- References

Recent advances in catalytic asymmetric cascade reactions of 3-isothiocyanato oxindoles for synthesis of spirooxindoles

158

Fen Tan and Hong-Gang Cheng

1. Introduction
2. Asymmetric aldol/cyclization cascade reaction of 3-isothiocyanato oxindoles with ketones or aldehydes
 - 2.1. Aldol/cyclization cascade reaction of ketones
 - 2.2. Aldol/cyclization cascade reaction of aldehydes
3. Asymmetric Mannich/cyclization cascade reaction of 3-isothiocyanato oxindoles with imines
 - 3.1. Mannich/cyclization cascade reaction of aldimines
 - 3.2. Mannich/cyclization cascade reaction of ketoimines
 - 3.3. Mannich/cyclization cascade reaction of α,β -unsaturated aldimines
4. Asymmetric Michael/cyclization cascade reaction of 3-isothiocyanato oxindoles with electron-deficient alkenes or alkynes
 - 4.1. Michael/cyclization cascade reaction of 3-ylideneoxindoles
 - 4.2. Michael/cyclization cascade reaction of nitroolefins (cyclic or acyclic nitroolefins)
 - 4.3. Michael/cyclization cascade reaction of 3-nitroindoles
 - 4.4. Michael/cyclization cascade reaction of allenic esters or 2-butynedioic acid diesters or alkyne ketones
 - 4.5. Michael/cyclization cascade reaction of miscellaneous electron-deficient alkenes
5. Asymmetric cascade reaction of 3-isothiocyanato oxindoles with azodicarboxylates
6. Asymmetric ring-opening/closing cascade reaction of 3-isothiocyanato oxindoles with aziridines
7. Conclusions
- Acknowledgments
- References

Recent advances in catalytic asymmetric cycloaddition reactions of *ortho*-quinone methides for synthesis of *O*-heterocycles

181

Xiao-Ye Yu, Wen-Jing Xiao and Jia-Rong Chen

1. Introduction
2. Catalytic asymmetric cycloaddition reactions of *ortho*-quinone methides
 - 2.1. Lewis acid-catalyzed cycloaddition reactions
 - 2.2. Phase-transfer catalytic cycloaddition reactions
 - 2.3. N-Heterocyclic carbene-catalyzed cycloaddition reactions
 - 2.4. Brønsted acid-catalyzed cycloaddition reactions
 - 2.5. Bifunctional chiral Brønsted base catalysis
3. Miscellaneous
4. Conclusions
- Acknowledgements
- References

Visible light-induced photocatalytic synthesis of five-membered nitrogen heterocycles

202

Quan-Qing Zhao, Dong-Mei Yan, Jia-Rong Chen and Wen-Jing Xiao

1. Introduction
2. Visible light-induced synthesis of pyrrole derivatives
 - 2.1. The synthesis of pyrroles
 - 2.1.1. Visible light-induced formal [3+2] cycloaddition reaction
 - 2.1.2. Visible light-induced Hantzsch reaction
 - 2.2. The synthesis of pyrrolidines and pyrrolines
 - 2.2.1. Visible light-induced formal [2+2] cycloaddition reaction
 - 2.2.2. Visible light-induced 1,3-dipolar cycloaddition reaction
 - 2.2.3. Visible light-induced radical cyclization reaction
 - 2.2.4. Visible light-induced nucleophilic cyclization reaction
 - 2.3. The synthesis of pyrrolidin-2-ones
3. Visible light-induced synthesis of indole derivatives
 - 3.1. The synthesis of indole derivatives *via* tandem radical cyclization
 - 3.2. The synthesis of indole derivatives *via* dual catalysis
4. Visible light-induced synthesis of pyrazole derivatives
 - 4.1. The synthesis of pyrazole derivatives *via* nitrogen radical cyclization
 - 4.2. The synthesis of pyrazole derivatives *via* nucleophilic cyclization
5. Visible light-induced synthesis of imidazole derivatives
 - 5.1. The synthesis of imidazole derivatives *via* formal [3+2] cyclization
 - 5.2. The synthesis of imidazole derivatives *via* nucleophilic cyclization
6. Miscellaneous
 - 6.1. Visible light-induced synthesis of thiazole derivatives
 - 6.2. Visible light-induced synthesis of isoxazole derivatives
7. Conclusions

Acknowledgments
References

Cycloadditions with mesoionic dipoles: strategy and control

228

Juan García de la Concepción, R. Fernando Martínez, Pedro Cintas and José L. Jiménez

1. Introduction and scope
2. Sydrones
 - 2.1. Cycloaddition of sydrones with alkynes
 - 2.1.1. Conventional cycloadditions
 - 2.1.2. Activated cycloadditions
 - 2.1.3. Application in bioorthogonal chemistry
 - 2.2. Cycloaddition of sydrones with alkenes
 - 2.3. Preparation of polymeric materials
3. Münchnones
 - 3.1. Synthesis and cycloadditions with alkynes
 - 3.2. Cycloadditions with alkenes.
 - 3.3. Other reactions of münchnones
 - 3.4. Phospha-münchnones
4. Isomünchnones and thioisomünchnones
5. Other mesoionic dipoles
 - 5.1. 1,2-Diazoimines
 - 5.2. 1,2-Dithiol-4-ones
 - 5.3. 1,3-Diazol-4-ones
 - 5.4. 1,3-Oxazol-5-imines
6. Conclusions

Acknowledgement

References

Pd and Cu-mediated domino reactions for the synthesis of sulfur heterocycles

254

Morgan Donnard, Thomas Castanheiro and Mihaela Gulea

1. Introduction
2. Synthesis of heterocycles incorporating only sulfur heteroatom
 - 2.1. From sulfur-containing starting material
 - 2.2. From sulfur-free starting material
3. Synthesis of heterocycles incorporating one sulfur and at least another heteroatom
 - 3.1. *N,S*-Heterocycles
 - 3.1.1. From sulfur-containing starting material
 - 3.1.2. From sulfur-free starting material
 - 3.2. *O,S*-Heterocycles
 - 3.2.1. From sulfur-containing starting material
 - 3.2.2. From sulfur-free starting material
4. Conclusion

Acknowledgements

References

2,3-Methanopyrrolidines: synthesis and ring-opening transformations

277

Yvan Six

1. Introduction
2. Methods of preparation
 - 2.1. Cyclopropanation of 2-pyrroline derivatives
 - 2.2. Intramolecular cyclopropanation of *N*-homoallylamine derivatives
 - 2.3. Intramolecular cyclopropanation of enamine derivatives
 - 2.4. Transannular cyclisation
 - 2.5. Formation of the cyclopropane ring from a pyrrolidine precursor
 - 2.6. Pyrrolidine ring-closure from an aminocyclopropane precursor
 - 2.7. Miscellaneous methods
3. Transformation into other nitrogen-containing heterocyclic systems
 - 3.1. Cyclisation of an iminium intermediate generated by protonation
 - 3.2. Isomerisation into an enamine intermediate and subsequent transformations
 - 3.3. 1,3-Dipolar cycloaddition taking place after isomerisation into an azomethine ylid
 - 3.4. Single-electron oxidation followed by formal [3+2] cycloaddition
 - 3.5. Ring expansion of 2-halo-1-aminocyclopropane derivatives
 - 3.6. Miscellaneous transformations

Acknowledgements

References

Synthetic approaches towards 2-spiropseudoindoxyls

308

Niels Marien, B. Narendraprasad Reddy and Guido Verniest

1. Introduction
2. Synthetic approaches towards pseudoindoxyls
3. Oxidations of fused indoles
4. Indol-3-ones as starting material
5. Indoleninones as starting material or key intermediate
6. Cycloadditions with isatogens
7. Formation of the indol-3-one five-membered ring
8. Conclusion

Acknowledgements

References

Recent advances in aminopyrazoles synthesis and functionalization

322

Jeanne Fichez, Patricia Busca and Guillaume Prestat

1. Introduction
2. Synthesis of 3-(5)-aminopyrazoles
 - 2.1. Reaction of β -ketonitriles with hydrazines
 - 2.1.1. With the hydrazine
 - 2.1.2. With monosubstituted hydrazines
 - 2.2. Condensation of α,β -unsaturated nitriles with hydrazines
 - 2.2.1. With the hydrazine
 - 2.2.2. With monosubstituted hydrazines
 - 2.3. Miscellaneous
 - 2.3.1. Synthesis of aminopyrazoles from isoxazoles
 - 2.3.2. Synthesis of aminopyrazoles from isothiazoles
3. Synthesis of 4-aminopyrazoles
 - 3.1. Knorr pyrazole synthesis
 - 3.2. Reaction of hydrazine with α,β -unsaturated ketones
 - 3.3. Thorpe-Ziegler cyclization
4. Mono-functionalization of aminopyrazoles
 - 4.1. Transition-metal-catalyzed C-H functionalization of aminopyrazole
 - 4.2. Transition-metal-catalyzed *N*-arylation of aminopyrazoles
 - 4.2.1. Palladium-catalyzed *N*-arylation with biased aminopyrazoles
 - 4.2.2. Palladium-catalyzed *N*-arylation with unbiased aminopyrazoles
 - 4.2.3. Copper-catalyzed *N*-arylation with biased aminopyrazoles
 - 4.2.4. Copper-catalyzed *N*-arylation with unbiased aminopyrazoles
 - 4.2.5. Nickel-catalyzed *N*-arylation with unbiased aminopyrazoles
 - 4.3. Conclusion
5. Di-functionalization of aminopyrazoles
 - 5.1. General trends of chemical reactivity
 - 5.2. Formation of pyrazolo[1,5-*a*]pyrimidines
 - 5.2.1. Reaction with β -diketones
 - 5.2.2. Reaction with activated enones
 - 5.2.3. Reaction with acrylonitriles
 - 5.2.4. Miscellaneous
 - 5.3. Formation of pyrazolo[3,4-*b*]pyridines
 - 5.3.1. Reaction with β -diketones
 - 5.3.2. Reaction with activated enone
 - 5.3.3. Reaction with chromones
 - 5.3.4. MCR with aldehyde and ketone
 - 5.3.5. MCR with aldehyde and dicarbonyl reagent
 - 5.3.6. MCR with aldehyde and 3-oxo-propanenitrile
 - 5.3.7. Miscellaneous

References

Atropisomeric bis-heterocycles as chiral pools for asymmetric transformations

348

Fabrizio Pertusati

1. Introduction
 - 1.1. Atropisomerism
 - 1.2. N-N Atropisomers
 - 1.3. Atropisomeric *N,N*-bisazaheterocycles
2. 3,3'-Biquinazoline-4,4'-diones (BiQs)
 - 2.1. Atropisomerism in 2,2'-disubstituted-3,3'-biquinazoline-4,4'-diones
 - 2.2. Synthesis of symmetrical 2,2'-disubstituted-3,3'-biquinazoline-4,4'-diones

- 2.3. Synthesis of unsymmetrical 2,2'-disubstituted-3,3'-biquinazoline-4,4'-diones
 - 2.3.1. Synthesis of 2-alkyl-3-aminoquinazoline-4(3*H*)-ones
 - 2.3.2. Synthesis of 4*H*-3,1-benzoxazine-4-ones
 - 2.3.3. Synthesis of unsymmetrical 2,2'-disubstituted-3,3'-biquinazoline-4,4'-diones *via* condensation of 3-aminoquinazoline-4(3*H*)-ones and 4*H*-3,1-benzoxazine-4-ones
- 2.4. Synthesis of 2-chirally-substituted-3,3'-biquinazoline-4,4'-diones.
- 2.5. Synthesis of 2,2'-chirally-substituted-3,3'-biquinazoline-4,4'-diones
- 3. Functionalization of symmetrical BiQ and their substrate controlled asymmetric reactions
 - 3.1. Substrate controlled reactions of 2,2'-disubstituted-3,3'-biquinazoline-4,4'-diones
 - 3.2. Attempt to remove the newly formed chiral center
- 4. Conclusions and further work
- Acknowledgment
- References

[Synthesis of 1,4-benzoxathiin-9*H*-purine derivatives as antiproliferative agents](#)

372

Olga Cruz-López, Joaquín M. Campos and Ana Conejo-García

- 1. Introduction
- 2. 9-(2,3-Dihydro-1,4-benzoxathiin-3-ylmethyl)-9*H*-purines
 - 2.1. Synthesis
 - 2.2. Biological assays
- 3. 9-(2,3-Dihydro-1,4-benzoxathiin-2-ylmethyl)-9*H*-purines
 - 3.1. Synthesis
 - 3.2. Biological assays
- 4. (*R*)- and (*S*)-9-(2,3-Dihydro-1,4-benzoxathiin-3-yl and 2-ylmethyl)-9*H*-purines
 - 4.1. Synthesis
 - 4.2. Biological assays
- 5. Conclusions
- Acknowledgement
- References

[Synthesis of fused aromatic N-heterocycles by tandem site-selective palladium-catalyzed](#)

389

[C-C and C-N coupling reactions](#)

Tran Quang Hung, Tuan Thanh Dang, Nghia Ngo Pham and Peter Langer

- 1. Introduction
- 2. Synthesis of fused N-heterocycles based on tandem Pd-catalyzed C-C and C-N coupling reactions
- 3. Synthesis of fused N-heterocycles based on tandem Pd-catalyzed C-N coupling and C-H activation
- 4. Synthesis of fused N-heterocycles based on tandem double Pd-catalyzed C-N coupling reactions
- 5. Conclusions and perspectives
- References