

INTERNATIONAL YEAR OF CHEMISTRY 2011

Vittorio Milanesi, Elena Bencini Centro Ricerche "Claudio Buonerba" Polimeri Europa SpA Stabilimento di Mantova

LA RAMIFICAZIONE DELLA CHIMICA A PARTIRE DAL BENZENE

o stabilimento Polimeri Europa (Gruppo Eni), situato a circa 3 km dalla città di Mantova, si estende su una superficie di 125 ettari. Si avvale di un'efficiente rete di collegamenti (strade, ferrovia, pipeline), attraverso la quale vengono movimentate ogni anno circa 2 milioni di tonnellate di materie prime e prodotti finiti.

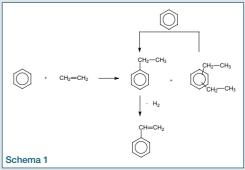
La struttura produttiva dello stabilimento si articola su tre cicli:

- produzione di stirene;
- produzione di polimeri stirenici;
- produzione di fenolo, acetone e idrogenati del fenolo (cicloesanone e cicloesanolo).

All'interno dello stabilimento è presente un Centro Ricerche che svolge attività di sviluppo di nuovi prodotti/processi e di assistenza alla produzione e alla clientela. Nell'ambito di queste attività, dispone di laboratori chimici (analitici e di sintesi), di impianti pilota e di un rilevante parco di attrezzature per la caratterizzazione e lo studio del comportamento alla trasformazione dei materiali plastici. La conoscenza approfondita delle reazioni coinvolte nei cicli produttivi e gli studi maturati negli anni hanno consentito l'ottimizzazione dei processi produttivi di Mantova e hanno contribuito a fornire a Polimeri Europa il know-how necessario per posizionarsi tra i licensors mondiali delle relative tecnologie.

Le principali materie prime utilizzate sono: benzene, etilbenzene, stirene, acrilonitrile, pentano, gomme polibutadieniche, cumene, idrogeno. Lo stabilimento riceve tramite pipeline da Porto Marghera etilene, etilbenzene, benzene e cumene; mediante ferrocisterne si approvvigiona di acrilonitrile e parte del benzene, mentre elastomeri e pentano vengono ricevuti via strada. Via ferrovia vengono spediti principalmente stirene, fenolo, acetone, cicloesanone. Via strada escono stirene, polistirene, alluminio tricloruro soluzione, idrogenati, fenolo, benzina semilavorata, acetone e altri intermedi. Alcuni prodotti (etilbenzene, fenolo, idrogeno e stirene)

sono completamente o in parte autoconsumati in impianti diversi da quelli di loro produzione. Di seguito viene riportata una breve descrizione dei cicli produttivi dello stabilimento.


Produzione di stirene

Il ciclo produttivo utilizza come materie prime l'etilene e il benzene e li trasforma prima in etilbenzene e poi, per deidrogenazione dello stesso, in stirene monomero (Schema 1).

L'etilbenzene è prodotto per alchilazione del benzene con etilene mediante catalisi Friedel-Crafts con tricloruro di alluminio, in presenza di cloruro di etile come attivatore del sistema catalitico. La reazione è fortemente esotermica e dal valore della costante di equilibrio si evince che l'equilibrio è praticamente tutto spostato verso la formazione del prodotto.

Accanto alla reazione principale hanno luogo reazioni di polialchilazione con produzione di alchilati superiori, in particolare dietilbenzeni e trietilbenzeni, oltre ad altre reazioni indesiderate, quali oligomerizzazione, cracking, isomerizzazione e riarrangiamento.

Per migliorare lo specifico di materia del processo i polialchilati, dopo separazione dalla miscela alchilata, vengono sottoposti a transalchilazio-

ne con benzene in presenza dello stesso sistema catalitico per essere in parte recuperati ad etilbenzene. Lo stirene viene prodotto dall'etilbenzene per deidrogenazione in fase gas, in presenza di vapore, median-

te un catalizzatore a base di ossidi di ferro e di potassio contenente piccole quantità di altri ossidi metallici in qualità di promotori. La reazione è endotermica e l'equilibrio è spostato verso la formazione del prodotto da alte temperature, pressioni ridotte ed elevati rapporti tra vapore e organico alimentati. I due principali sottoprodotti del processo sono benzene e toluene, formati rispettivamente per cracking e hydrocracking dell'etilbenzene. Altri sottoprodotti, presenti in misura minore ma comunque critici ai fini del processo e della purezza dello stirene finale, sono il fenilacetilene e il divinilbenzene.

Lo stirene è utilizzato come materia prima per gli impianti di polimerizzazione e di copolimerizzazione con acrilonitrile e/o gomma per la produzione di polimeri di diversa tipologia (polistirene "general purpose" - GPPS, polistirene antiurto - HIPS, polistirene espandibile - EPS, copolimero SAN, terpolimero ABS).

Questi materiali sono destinati principalmente ai settori automobilistico, elettrodomestico e dell'imballaggio.

Dalla deidrogenazione dell'etilbenzene si produce un gas ricco di idrogeno, contenente anidride carbonica come principale impurezza, che è utilizzato come materia prima per l'idrogenazione del fenolo.

Produzione di fenolo, acetone e idrogenati del fenolo (cicloesanone e cicloesanolo)

Il ciclo produttivo utilizza come materie prime cumene e idrogeno e li trasforma in fenolo, acetone, alfa-metilstirene, acetofenone, cumene idroperossido, cicloesanolo, cicloesanone.

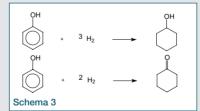
Ciclo fenolo

La produzione di fenolo da benzene via cumene si sviluppa attraverso i seguenti passaggi (Schema 2): a) alchilazione del benzene con propilene per ottenere cumene;

- b) ossidazione del cumene a cumene idroperossido;
- c) scissione acida del cumene idroperossido a fenolo e acetone.

Il primo step consiste nella produzione di cumene per alchilazione del benzene con propilene mediante catalizzatori zeolitici o acido fosforico supportato. Il cumene viene inviato a Mantova via pipe-line da Porto Marghera.

Il secondo step prevede che il cumene venga ossidato con aria a cumene idroperossido. Il processo è radicalico ed è caratterizzato dalla formazione di parecchi sottoprodotti di reazione. I principali sono acetofenone, fenildimetilcarbinolo e dicumilperossido.


Al termine del processo produttivo l'acetofenone, recuperato come produtto puro, viene venduto. Nel terzo step il cumene idroperossido produtto viene scisso, in ambiente acido, in fenolo e acetone. Anche in

questo caso il processo è caratterizzato dalla presenza di numerose reazioni secondarie, che si originano principalmente dal fenildimetilcarbinolo e dal dicumilperossido, formatisi in precedenza in ossidazione. Il sistema è complesso, e se da un lato si generano prodotti recuperabili, come l'alfa-metilstirene, che trova applicazione come prodotto finito. dall'altra reazioni indesiderate portano alla formazione di sottoprodotti non più recuperabili che sono causa di perdita di fenolo e di successivi problemi di purificazione dei prodotti puri. Il fenolo è principalmente usato, assieme all'acetone, per produrre bisfenolo A, un componente base delle resine epossidiche e dei policarbonati. Viene anche utilizzato per la produzione di resine usate per laminati plastici, materiali isolanti (settore dell'auto, dell'elettronica e degli accessori) e adesivi (lavorazione del legno e del compensato). È inoltre un intermedio per la produzione di acido salicilico (industria farmaceutica). L'acetone costituisce la materia prima per la produzione del metilmetacrilato ed è impiegato come solvente per pitture, vernici, lacche, adesivi, inchiostri e per resine viniliche, acriliche e a base di cellulosa. È inoltre un intermedio per la sintesi di molti altri solventi, per l'industria farmaceutica (vitamine) e cosmetica, per la produzione, attraverso condensazione aldolica, di altri chetoni (metil-isobutilchetone) ed alcooli (metil-isobutilcarbinolo). L'acetofenone è un intermedio per prodotti utilizzati nel settore agricolo e farmaceutico. È un solvente per plastiche, resine, eteri di cellulosa ed esteri. Derivati dell'acetofenone sono ingredienti utilizzati per dare aroma e fragranza a saponi, detergenti, cosmetici, profumi, ed anche a cibi, bevande e al tabacco.

L'alfa-metilstirene è un intermedio utilizzato nella produzione di resine e polimeri. Il cumene idroperossido viene utilizzato, oltre che per la produzione di fenolo e acetone, anche per la sintesi di altri perossidi organici, principalmente dicumilperossido, che trovano utilizzo come iniziatori nelle reazioni di polimerizzazione.

Ciclo idrogenati del fenolo

L'idrogenazione del fenolo a cicloesanone e/o cicloesanolo avviene secondo le reazioni riportate nello Schema 3:

La variazione di produzione è legata al tipo di catalizzatore utilizzato:

- al nichel per la produzione di cicloesanolo;
- al palladio per la produzione di cicloesanone.

La reazione è esotermica. La conversione del fenolo è pressoché completa e la selettività è molto alta.

Oltre ai prodotti puri cicloesanone e cicloesanolo, a Mantova viene prodotta anche una miscela dei due, denominata *olone*.

Questi prodotti sono intermedi chiave nella produzione di acido adipico (nylon 6,6) e di caprolattame (nylon 6). Il cicloesanolo è inoltre uno stabilizzante ed omogeneizzante per saponi e detergenti sintetici. Il cicloesanone trova impiego anche come solvente e diluente per lacche, resine e polimeri, insetticidi, erbicidi e prodotti farmaceutici.