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T
he tens of thousands of substances produced every year
by industrial and agricultural activities give increasing impor-
tance to the evaluation of their hazards to the life and health
of humans and other living species. This highly challenging

task confronts national and international regulatory agencies including
the U.S. Environmental Protection Agency (U.S. EPA), Canadian
Ministry of the Environment, and the European Union [1-3]. Time and
funding constraints do not allow for feasibly performing toxicity tests
on all new and existing chemicals released into the environment. It is
therefore necessary to integrate experimental data with predictive
methods able to provide additional information and maximize effi-
ciency by prioritizing those chemicals that are most suitable for empi-

rical assessment. Since it was observed that the properties of com-
pounds depend on their structure, quantitative structure-activity rela-
tionships (QSARs) have been employed in elucidating the specific
mechanisms underlying toxic effects. Nowadays, QSARs have been
recognized by the regulatory authorities as scientifically credible tools
for the prediction of acute toxicity when few or no empirical data are
available [1, 4, 5]; they may hence greatly contribute to achieving the
goal of abandoning animal tests.
Basically, a QSAR aims at finding a function F that relates an appropri-
ate representation of the molecular structure to the biological activity
(or any other target property). More in detail, F can be decomposed
into a feature representation function f and a mapping function g. The

Carlo Bertinettoa, Celia Ducea, Alessio Michelib,
Roberto Solaroa, Maria Rosaria Tinéa

aDipartimento di Chimica e Chimica industriale
Università di Pisa
bDipartimento di Informatica
Università di Pisa
mrt@dcci.unipi.it

In this paper the advantages of predicting toxicity through QSAR analysis by direct and adaptive treatment of the molecular structure
are discussed. This approach indeed allows for retaining the whole structural information and thus tackling the issue in a more
flexible way. It is particularly suitable in new problems for which little or no background information is available.
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choice of the functions f and g is the discriminating aspect among the
different approaches, with a major role of the issues related to the f
function. As already outlined [6], the function f entails both the repre-
sentation of the molecular structure and the subsequent encoding of
the structure into a set of numerical descriptors. Different approaches
have been used to realize the f function. Standard QSAR approaches
use molecular properties or structural molecular descriptors to encode
the molecules (f function) and an either linear or nonlinear regression
model to compute the output value (g function). Traditional approach-
es to prediction of substances toxicity are based on the standard
QSAR assumption.
A great number of models have been developed in the past decades,
ranging from the first simple Meyers-Overton rule at the beginning of
the 20th century to very sophisticated ones that employ many descrip-
tors and can account for different Mechanisms Of toxic Action (MOA)
[7-9]. These models can be classified into two categories:
a) QSARs that use the structure information only indirectly, while
physicochemical properties are used as input variable(s) to predict the
biological effect of interest;
b) QSARs that directly take as input only the information reflecting
structural features (structural molecular descriptors), such as number
of occurrences of specific molecular groups/atoms and how they are
connected inside the molecule (topological indices and matrices).
The models gathered into the C-QSAR computer package developed
by Hansch and his group at Pomona College within the Medicinal
Chemistry Project and distributed by BioByte Corp. [10] belong to the
first category. Another set of rules of thumb was then implemented in
the 3.1 version of the M-CASE program created by Klopman et al.
[11]. Physicochemical information does not only allow for correlating
the correct toxicity, but also its corresponding MOA. For instance, Kow

(octanol/water partition coefficient), Ka (acidity constant) and ELUMO

(energy of the lowest occupied molecular orbital) are often used to dis-
criminate among polar narcosis, oxidative uncoupling and (direct or
metabolically induced) electrophilic mechanisms of toxic action [12-
15]. A major problem associated to these techniques, giving rise to the
need for large databases such as the one contained in the C-QSAR
software, is that the preparation of the needed input frequently
requires either collection of experimental data or computation of the
associated physicochemical parameters. For example, Kow or a rele-
vant incremental derivative, which is one of the most widely used input
variables in this type of QSARs, is often calculated through appropri-
ate software packages, such as MedChem [16]. This de facto corre-
sponds to using (more or less) the structural information as direct input
in other structure-activity relationships, which are themselves subject
to various restrictions and can generate serious additional errors [17].
These QSARs are performing well on very narrow classes of com-
pounds comprising molecules having similar basic skeleton and only
one MOA, or more MOAs that are known to correlate to specific
descriptors (local models). The best accuracy is expected in such spe-
cific tasks. The larger challenge is to simultaneously handle a variety of

more complex substances with unknown MOAs (non-local models).
The search for a more comprehensive solution to this issue led to the
development of the models belonging to the second category, of
which a few examples are mentioned below. These methods are
based on simple molecular descriptors derived solely from the chem-
ical structure, do not use the octanol/water partition coefficient, do not
involve any rules of thumb, and do not require a substance classifica-
tion for the handling of the information or generating the results.
For the formal description of relationships between the target proper-
ty and the chosen molecular representation (g function), the most fre-
quently used methods are multiple linear regression (MLR) and partial
least squares (PLS). Other widely employed statistical and machine
learning techniques include discriminant analysis, multivariate analysis,
adaptive least squares, support vector machines (SVM), k-nearest
neighbour (kNN) and genetic algorithms [18, 19]. Because the relation-
ship between structural descriptors and toxicity is usually nonlinear,
neural networks (NNs) of different types are also frequently and suc-
cessfully employed for the realization of the g function. [18-24]. NNs
are universal approximators able to learn nonlinear relationships
between a proper representation of a chemical structure and a given
target property from a set of examples.
In order to obtain a good QSAR prediction, it is of fundamental impor-
tance to have empirical data of high quality [25]. A database that sat-
isfies this requirement [23] is the Tetrahymena toxicity database, Tetra-
tox, which contains population growth inhibition concentrations
(IGC50) of the freshwater ciliate Tetrahymena Pyriformis [26]. This pro-
tozoan is attractive for its fast growth rate and inexpensive assays and
for its significance in the estimation of the impact of toxicants in aquat-
ic environments [27-29]. The measurement procedure [12] has been
carefully established over the years and is now widely recognized as a
standard; the database is constantly growing and currently includes
more than 2,500 bioassays tested on approximately 1,400 organic
compounds [26].
Several QSAR studies were performed in the past on the Tetratox
database with models of either type. Considering only those that
employ neural networks for the realization of the g function, an almost
up-to-date list of NN QSAR models for Tetrahymena is contained in
ref. 23. Data sets of small size (< 300 compounds), containing homo-
geneous molecules with known MOAs are successfully described by
models employing descriptors related to the toxic effect of the studied
compounds. Among these, the best performances were achieved by
Melagraki and co-workers [19], who employed a Radial Basis Function
(RBF) NN over 180 substituted phenols represented through five
descriptors: logarithm of the octanol/water partition coefficient
(logKow), acidity constant (pKa), the number of hydrogen bond donors
(NHdon), the energies of the highest occupied and lowest unoccupied
molecular orbital (EHOMO and ELUMO, respectively). The toxicity of these
phenols involves four different MOAs [30,31], polar narcotics, weak
acid respiratory uncouplers, pro-electrophiles and soft electrophiles,
which are highly correlated to the chosen descriptors [32]. In particu-
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lar, Kow, expressing hydrophobicity, provides a measure of the degree
of penetration of the toxic substance into the cell tissue and its con-
centration at the different sites of action [33]. The ability to act as
oxidative uncouplers is associated with specific pKa values [13].
Hydrogen bonding, evaluated by NHdon, can discriminate between
polar and nonpolar narcotics [34] and may also play a role in fixating
the toxicant in the course of bioreactive interactions with endogenous
macromolecules. EHOMO, characterizing the ionisation potential and
thus the ability of the molecule to donate electrons to reaction partners
[35], can be used to model the metabolic activation required by pro-
electrophiles in the case of oxidative pathways. ELUMO, which quanti-
fies the electron affinity of the chemical [35], has also been demon-
strated to discriminate various MOAs [31], as it may reflect the tenden-
cy of phenols to directly attack electron-rich sites of endogenous
macromolecules, as well as their ability to undergo metabolic activa-
tion following 1-electron reduction [36]. The correlation obtained by
Melagraki showed a squared correlation coefficient (R2) of 0.94 for the
training set, 0.88 for an external test set of 41 molecules and 0.72 for
the leave-one-out cross validation.
For larger and more heterogeneous data sets, the above-mentioned
methods give way to non-local models that use structural features as
input. Among these, the model that achieves the best performance is
the one by Niculescu et al. [17] that used 33 descriptors derived from
structural features, such as molecular weight and occurrence of specif-
ic atoms or molecular fragments, to fit a set of 750 diverse organic com-
pounds through a Probabilistic Neural Network (PNN). The R2 value for
the training set and for the external validation set of 75 molecules was
0.93 and 0.89, respectively. The largest investigated data set was the
one used by Kahn et al. [23], who selected a set of six descriptors
through Heuristic Back-Propagation Neural Networks (hBNN) for 1371
compounds, partitioned into a training, test and external validation set of
610, 304 and 457 molecules, respectively. The obtained correlations
showed R2 values of respectively 0.83, 0.82 and 0.79 for each set.
These models achieved good predictions and are often able to simul-
taneously treat different chemical classes and mechanisms of toxic
action. However, because the used regression methods take fixed-
size numerical vectors as input, all these models require the definition
of suitable molecular descriptors in order to reduce molecules to vec-
tors of the same dimension. The choice of the number and types of
numerical descriptors used to represent chemical compounds of a
particular data set is a delicate and cumbersome task as the most
suitable descriptors are strictly dependent on the target property and
the structural characteristics of the considered compounds. In partic-
ular, descriptors summarize the background knowledge on the specif-
ic task at hand. This fact is especially significant in toxicological pre-
diction because the latter involves the study of a wide range of chem-
ical classes, as well as different target properties (LD50, IC50, IGC50…),
measured on different species with different methodologies. The need
for molecular descriptors characterizes the limit of applicability for
these methods, as a new set of molecular descriptors must be calcu-

lated and selected every time a new property or compound type is
investigated [6].
In this framework, our goal is to make a first step for the critical eval-
uation of toxicity prediction by means of a non-standard QSPR (Quan-
titative Structure-Property Relationship) approach developed by our
research group for diverse fields during the last years. This approach
is based on Recursive Neural Network (RNN) methods, which belong
to the area of machine-learning models developed to directly handle
structured data. The main advantage of the RNN approach stems
from the automatic generation of descriptors by learning the numeri-
cal encoding (function f) of the input structure together with the regres-
sion function g. A second important point concerns the treatment of
molecules as variable-size structures, consisting of hierarchical sets of
labelled vertexes connected by edges belonging to subclasses of
graphs, such as rooted trees.
Labelled structures are highly abstract and graphical tools that can
represent a molecule at different levels of detail, such as atoms,
bonds, or chemical groups. A natural representation of a molecule is
made possible by reproducing its 2D structure in the input graph. This
feature allows for applying the model to different prediction problems
without the need for lengthy calculations of descriptors or a great
amount of background knowledge. This model is particularly suitable
for all the new tasks in which it is useful to retain the whole structural
information and there is little or no available background knowledge.
These aspects often characterize toxicity evaluation problems.
It must be stressed that the use of hierarchical labelled structures as
class of data introduces both constraints and flexibility to the molecu-
lar representation. In particular, the choice of fragments, i.e. the level
of detail by which chemical groups are represented in the structures
determines at the same time the level of chemical information, the
fragment sampling in the data set, the structure size and complexity
(see Molecular Representation section). An effective representation
seeks a good balance among these often conflicting issues [37].
The RNN model has already been successfully applied to the predic-
tion of various physicochemical properties of different classes of
chemical compounds, ranging from simple molecules to polymers.
Previous works dealt with the boiling points of linear and branched
alkanes [38, 39], the pharmacological activity of a series of substitut-
ed benzodiazepines [38-40] and 8-azaadenine derivates [41], the free
energy of solvation of monofunctional compounds [6], the glass tran-
sition temperature of (meth)acrylic polymers and copolymers [37, 42-
46] and the melting point of pyridinium bromides [37, 47]. In each
case, the flexibility introduced by our approach allowed the use of the
same computational method to study a variety of properties and dif-
ferent molecular structures just by tuning the level of structural detail
to the characteristics of the investigated molecular data set.
This paper reports our first step in the use of the RNN-QSPR tech-
nique, as a predictive model based only on the graph molecular struc-
ture, in toxicological studies. To this end, we employed the data set
from the mentioned work by Melagraki [19].
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Method
We here briefly explain the main characteristics of the RNN model,
which is given a complete description in ref. [6, 38-41]. What mainly
characterizes RNNs is their ability to directly deal with labelled hierar-
chical structured representation of molecules, in particular in the form
of rooted trees, a subclass of DPAGs (Directed
Positional Acyclic Graphs). Trees have a variable
size and are a much more rich and flexible vehicle
of information than the flat vectors of descriptors
employed in traditional QSAR approaches.
Another major characteristic of RNNs is their ability
to adaptively encode the input structures by learn-
ing from the given structure-property training exam-
ples. In order to achieve this goal, the RNN recur-
sively encodes each structure through a bottom-up
approach that mimics their morphology, see Fig. 1.
For each vertex of the input structure, the model
computes a numerical code by using information of
both the vertex label and, recursively, the code of
the sub-graphs descending from the current ver-
tex. This process computes a code for the whole
molecular structure. The code is then mapped to
the output property value.
The learning algorithm allows the model for tuning
the free parameters of the neural network functions
on the basis of the training examples and by this
process the RNN models a direct and adaptive
relationship between molecular structures and tar-
get properties. Generally, the learning process
becomes more effective as the number of training
examples increases.

The use of an adaptive encoding for structures avoids the need for
computing/measuring or selecting ad hoc molecular descriptors, as in
traditional methods, and the need for the prior definition of a similarity
measure for the structured data. It can also be interpreted as an auto-
matic way to discover by learning the specific structural descriptors for
the particular task to be solved.

Molecular representation
Chemical compounds are represented as labelled rooted ordered
trees by a 2-D graph that can easily be obtained from its structural
formula. Each molecule is partitioned into defined atomic groups:
each group corresponds to a vertex of the tree and each bond
between them corresponds to an edge, as depicted in Figs. 2-4. The
criteria guiding this fragmentation are basic notions of chemical reac-
tivity and structural sampling. When dealing with structured
domains, the latter consists in the coverage of the input space, i.e.
occurrence of the different fragments/components in their possible
topologies in the given data set. The sampling issue suggests
choosing the smallest number of atomic groups able to build the
greatest number of molecules in a reasonably compact form. An
appropriate set of rules was defined in order to have a unique corre-
spondence between each molecule and its chemical tree. All frag-
ments were rated according to a priority scale that was used to
determine the tree root and the total order on each vertex subtree

Fig. 1 - Examples of unfolding of the encoding process across a tree structure.
Each box includes the sub-trees progressively encoded by the recursive neural
network. The encoding process begins from the leaves, as indicated by the
thicker arrows at the bottom, and proceeds step-by-step up to the root. The code
computed for the root is thus considered the code for the entire molecule

Fig. 2 - Tree representation of 2-pentanone. The fragments in this example have labels that are all
orthogonal to each other

Fig. 3 - Tree representation of poly(methyl acrylate). The Start label contains information about average
macromolecular characteristics, here highlighted in bold
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[6]. Each vertex is assigned a label, which is a tuple of variables cat-
egorically distinguishing the symbol of the atomic group. Despite
being conventionally defined, a label can convey chemical informa-
tion through orthogonality or similarity to other labels, see Fig. 2.
This kind of structure-based representation has the advantage of
generality, as it can adequately represent any sort of chemical com-
pound [44]. A clear example of this flexibility is given by its implemen-
tation for the description of polymers: the 2D graph of the repeating
unit is partitioned and treated like a molecule, with the difference that
its ends are capped by two fictitious groups, named Start (which is
the root vertex) and Stop, see Fig. 3. The former does not serve only
representational purposes, as it can also be used to convey informa-
tion on average macromolecular characteristics. In our experiments,
Start accounted for the main chain stereoregularity recorded as
molar fraction of r dyads [42]. Copolymers were represented in a
similar manner, with the Start group connecting two repeating units
instead of one and containing information concerning their respec-
tive molar fraction [45, 46].
Different representations were also devised for compounds, both mol-
ecular and polymeric, containing cyclic moieties [37, 44, 47]. They
span from a compact description to a more detailed and general one
that makes use of standard chemical representation systems, such as
SMILES and InChI [48-50].
In the current work we described the 221 phenols in the data set with
27 atomic fragments: Phenol, C, CH2, CH3, CH2-CH2 (two consecu-
tive CH2), C(sp2) (forming double bonds), H (either aliphatic or aromat-
ic), H(acid), H(aldehyde), C=O, COO, O, OH, N(amine), NH2(amine), NH(amide),
NH2(amide), NO, NO2, N(sp2), CN, F, Cl, Br, I, Phenyl, Cyclopentyl. Acids
and aldehydes were represented as COO-H(acid) and C=O-H(aldehyde),
respectively, because they are not frequent in the data set and can in
this way be trained also through their analogies with the COO and
C=O groups. The tree root was always placed on the Phenol group
and its children, i.e. the substituents on the phenyl ring, were ordered
according to their position on the ring, see the example in Fig. 4. The
direction of the ordering (i.e. clockwise or counter-clockwise) is the
one that assigns the lowest position to the group with highest priority,

in analogy with IUPAC rules. In the case of two or
more groups with identical priority, the direction is
determined by the subsequent group in the priority
scale, until the ambiguity is solved.
Although based on a 2D graph, the tree-structured
molecular representation can also be extended to
describe 3D properties through definition of appro-
priate rules, e.g. the children ordering can be
exploited to indicate chirality in analogy with Fish-
er’s projections [6].

Experiments and results
In the context of the discussion about the pro-
posed approach for the adaptive processing of

chemical structures by RNN, as mentioned in the introduction, we
addressed a first step in its critical evaluation for toxicology applica-
tions through the following computational problem. We used a data
set taken from Melagraki [19, 32], consisting of 221 phenols and
their corresponding toxicity data to the ciliate Tetrahymena pyri-
formis in terms of log(1/IGC50), with IGC50 indicated in mmol/l.
These compounds comprise four different modes of toxic action:
polar narcotics, weak acid respiratory uncouplers, pro-electrophiles
and soft electrophiles. This data set was selected because it con-
tains structurally similar compounds that can be easily represented
by the rules previously determined and assessed on other data sets
[6, 37]. Its size seemed a reasonable compromise between the
necessity of many training compounds and the need of a data set
that is easy to compile and to analyse. The data source, the Tetra-
tox database, guarantees that toxicity figures are very reliable and
that the set can easily be expanded for further and more complete
works. The total data set of 221 compounds was split into a train-
ing set and an external test set of 180 and 41 molecules, respec-
tively; the partition is the same as in ref. [19].
The connection weights of the RNN model are initialized at random
because of the use of a stochastic gradient-based technique to
solve a least mean square problem. Consequently, different out-
comes can be achieved during the training of the network by start-
ing from diverse initial conditions. In order to have significant
appraisal of the results, in each experiment sixteen trials were car-
ried out for the RNN simulation and the results were averaged over
the different trials. It is worth noting that a naive approach based on
the selection of the best outcome over the various trials can lead to
an unsatisfactory and unreliable estimation of the model perfor-
mance. Moreover, this practice discards potentially useful informa-
tion on the model behaviour, which is stored in the discarded
regression estimates. The use of a basic ensemble method avoids
these problems while offering an improved regression estimate.
Learning was stopped when the maximum error for each compound
of the training set was below a preset threshold value. Care must be
taken in the selection of this value, in order to model an accurate rela-

Fig. 4 - Tree representation of 4-chloro-2-isopropyl-5-methylphenol. The children of Phenol, which is the
tree root, are ordered according to the position of the substituents on the phenyl ring, as indicated by
the numbers 1-5 (not to be confused with the position numbers of the IUPAC nomenclature)



tionship according to the suitable tolerance for the noisiness and
uncertainty of the data. A general rule suggests choosing a training
error tolerance equal to or near the experimental uncertainty, whenev-
er such information is known. In our experiments the threshold was set
at 1.00 unit of log(1/IGC50) ([IGC50] = mmol/l). Preliminary steps were
performed to asses the soundness of this threshold value, also with
respect to the outliers. We basically observed that changing the fitting
level does not allow for addressing the issue of the analysis reported
in the following, while the set threshold value allows us to achieve a fit-
ting comparable to the literature results. In particular, for this task, vari-
ations on the model hyper-parameters do not seem to significantly
affect the basic results.
Before evaluating the experimental results and comparing them with
the reference work, we need to make some considerations about the
purpose and conditions of our study. The current investigation was not
aimed at a state-of-the art prediction, but instead at exploring the pos-
sibility of deriving toxicity relationship by direct treatment of the chem-
ical structure. This is an open challenge and the present RNN applica-
tion to this particular problem only constitutes an early forward step.
Therefore we employed only a generic, mainly untuned representation
of the molecular structures. In principle, this representation allows for
getting rid of ad hoc background knowledge, while retaining the flexi-
bility to model molecules with a graphical tool. Such general approach
may not be the most suitable for very specific tasks. It is important to
point out that the RNN model is not constrained to the exclusive use
of molecular structure, which can be complemented with information
of other type inserted into the vertex labels, as was done by inserting
stereoregularity and composition in the representation of polymers.
However, we have chosen not to exploit this possibility because we
are more interested in applicative generality rather than accurate per-
formance on this particular problem.
On the other hand, the purpose of Mela-
graki was to apply and refine the RBF
technique on a molecular representation
already known to be appropriate for the
investigated compounds and property.
He made use of five descriptors taken
from the literature that intrinsically con-
tain a significant amount of a priori infor-
mation, including the correlation with the
corresponding MOA [32]. Moreover, two
descriptors are even experimentally
measured properties instead of purely
structure-derived parameters. The train-
ing-test split was determined through
the Kennard-Stone algorithm [51], which
is based on the relative distance
between pair of compounds in terms of
some metric defined on the input vari-
ables. These inputs (numerical descrip-

tors) are of a different type than those used in our method (hierar-
chical structures), therefore the test set may adequately map the
variable space for the RBFNN model but not for the RNN one.
In the first experiment we applied the described RNN method on the
whole data set without further adjustments. The training set was fitted
with very good accuracy, showing a mean absolute error (MAE) of
0.17 and a squared correlation coefficient (R2) of 0.92. These values
are comparable to the best models available in the literature. The test
set prediction showed instead a MAE = 0.34 and an R2 = 0.60, a per-
formance not on par with that of the other referenced methods. The
calculated vs experimental points are plotted in Fig. 5.
The reported results point at a high complexity of the problem with
respect to molecular structures. For instance, there are various
groups of compounds in the data set with similar structure but very
different target values. Examples are given for instance by 1,3,5-tri-
hydroxybenzene and 1,2,3-trihydroxybenzene, having log(1/IGC50)
of -1.26 and 0.85, respectively. Consider that the total target range
is from -1.50 to 2.71 log units. More training examples for these
types of molecules are required to correctly model their relationship.
In other words, a few points with widely spaced apart target values
characterize some regions of the input structure space for which
the sampling level is insufficient. In this case, the sampling issue
does not significantly affect descriptor-based methods since the
input space used by Melagraki, i.e. a five-dimensioned vector, is
small. In the case of our structure-based method, a major improve-
ment of the prediction can be expected by expanding the data set
to increase the sampling level.
A group of molecules that can be singled out for showing greater
errors consists in those with very low target values. Compounds in
the test set with log(1/IGC50)<0 have a MAE of 0.43, which even
reaches 0.63 for targets lower than -0.20. We have to stress that

SC
IE

N
C

E
&

TE
C

H
N

O
LO

G
Y

Novembre ‘09 141

Fig. 5 - Predicted vs observed toxicity using the RNN model. Numbers correspond to log(1/IGC50), with [IGC50] =
mmol/l. Test compounds with very low toxicity show higher deviations from the correct value
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these values correspond to IGC50>2 mmol/l, that is to compounds
of low toxicity. In any case, we tried to overcome this issue by run-
ning a second experiment in which the training molecules with tar-
get lower than -0.20 were sampled twice. The overall results were
almost identical to the previous experiment, but the test com-
pounds with negative targets showed a slight but significant
improvement (MAE=0.38). A similar behaviour, though not clearly
attributable to resampling, was observed at the other end of the tar-
get range: the MAE of molecules in the test set with log(1/IGC50)>1
went from 0.31 in the first experiment to 0.28 in the second one.
These observations show that resampling can be held as a useful
tool for recalibration of the results even if it did not generate a much
better average outcome.

Conclusions
The development of QSAR techniques based on the direct and
adaptive treatment of molecular structure has a great potential in
toxicological studies. The challenges posed nowadays in this field
point to the formulation of general methods able to deal with con-
tinuously arising issues featuring unknown properties of newly dis-
covered chemicals. The structured approach allows for retaining the
whole structural information in order to better tackle predictive
problems for which background knowledge is scarce or absent. It
may still be less suitable for other more specific tasks, in which
descriptor-based methods exploiting a priori information for local
models still provide the state-of-the-art performances.
In the present implementation, we applied a direct structured repre-
sentation by means of our RNN model on an already thoroughly inves-
tigated data set. In the described sampling scenario that characterizes
this task, the power of the model to fit the data is not yet adequate to
achieve the same predictive performances obtained by reference
methods [19] on the external test set. However, our results must be
evaluated by considering the different purpose and conditions of our
study. Our molecular representation stemmed from a much more gen-
eral hypothesis that ignores specific knowledge concerning this partic-
ular problem, such as MOA information and target-related physico-
chemical properties. This is a choice rather than an obligation,
because the flexibility of our model does allow for including such
knowledge in the input data, probably improving the results. It was
observed that correlating the target property to the structure alone
gives rise to an especially complex task, as highlighted by the series
of compounds with similar structure and very different toxicity value.
Additionally, some regions of the input space could not be trained
properly due to lack of sampling, whereas descriptor-based methods
avoid this problem because their input space for this task (where the
background knowledge is summarized by five descriptors) is of a
much lower dimension.
The present investigation is thus meant to be an exploratory effort,
paving the way for further application of our model to the toxicological
field. Major improvements are expected by increasing the number of

molecules in the data set in order to provide more adequate sampling.
Full exploitation of available databases, including Tetratox, will provide
the necessary data. The appropriate definition of our representation
rules could also allow for including 3D features (e.g. chirality), which
are known to often have a great influence on toxicity, in our 2D
description. Finally, the second experiment showed that partial resam-
pling of the data set, even if not always effectively improving the over-
all outcome, could be useful for recalibration.
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RIASSUNTO
Un approccio chemioinformatico alla predizione della tossicità basato sull’apprendimento adattivo
di rappresentazioni molecolari strutturate
In questo lavoro viene presentato un nuovo metodo QSAR basato sull’uso di una rete neurale ricorsiva (RNN) per la predizione “in silico” dei valori di tossicità di sostanze. Il

metodo proposto utilizza una rappresentazione gerarchica strutturata delle molecole, in particolare nella forma di albero ordinato etichettato, molto più generale e flessibile dei

tradizionali vettori di descrittori molecolari numerici e che permette di mantenere tutta l’informazione strutturale. Le rappresentazioni ad albero vengono trattate dalla RNN

tramite un metodo di apprendimento adattivo che realizza contemporaneamente sia la funzione di codifica sia quella di mapping sulla proprietà target.


